TABLE 2. GRAIN-SIZE TRENDS IN THIN SECTIONS FROM UNIT II OF THE MIMBRAL K/T SANDSTONE COMPLEX | | Genera
Muddy
Matrix | | | | al
Sparry
Calcite
Cement | | Limeclasts | | | Terrig.
Detritus | | | |--|---------------------------|--------------|----------------------------|-------------|-----------------------------------|-----------------------|------------|-----------------------|------------------|---------------------|---|--| | Samples | Crs sand/fine gravel | Crs-med sand | Med-fine sand | Fine sand | Terr. sand | Foram grainst. | Crs | Med | Med-fine | No 1st grains | Med | Med-fine v fine | | M29
M28
M27
M26
M25
M24
M23
M22
M21
M20
M19
M18
M17
M16
M15
M14
M13
M12
M11
M10
M9
M8
M7
M6
M5
M4
M3
M2
M11
M10
M11
M10
M11
M11
M11
M11
M11
M11 | x | | | | x
x
x | x
x
x
x
x | x | x
x
x
x
x | x
x
x
x | | X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X | | | | x | x
x | X
X
X
X
X
X | X
X
X | | | X
X | X
X
X
X | X
X
X
X | x | x | x
x
x
x
x
x
x
x
x
x | m.mk. 16, supplemented at m.mk. 48 for the part of Unit II missing there. The most common composition is a foraminiferal grainstone with abundant lime-clasts and with minor amounts of terrigenous grains, alternating with layers rich in terrigenous detritus. A basic twofold subdivision could be made of Unit II sandstone (Table 3). The basal part has essentially a "dirty muddy matrix" (Fig. 12A); the upper part is a clean, bettersorted sandstone with a sparry calcite matrix (Fig. 12B). Petrographically, three different groups of sediment can be distinguished. The first group—the lower part of Unit II (M2 through 15)—has a "dirty" aspect due to smeared, lime-mud matrix. The sand is a polymict mixture of medium-fine to fine-grained terrigenous sand, with foraminifers. Lime-mud grains occur, roughly fining up from coarse grained at the bottom to medium and fine grained at the top. The second group—Sam- TABLE 3. Ir, Fe, AND Cs ABUNDANCES IN THE MIMBRAL SECTION | Position
(m) | Ir
(ppt) | Fe
(%) | Cst
(ppm) | | | |-----------------|--------------|-----------|--------------|--|--| | -0.14 | 13 ± 4 | 2.90 | 3.55 | | | | +0.13 | 18 ± 5 | 4.96 | 0.30 | | | | +0.15 | 4 ± 9 | 12.95 | 0.73 | | | | +0.78 | 16 ± 4 | 1.09 | 0.98 | | | | +1.48 | 7 ± 4 | 1.41 | 0.36 | | | | +1.83 | $8 \pm 9/7$ | 1.19 | 0.54 | | | | +1.98 | 25 ± 32/20 | 1.01 | 1.06 | | | | +2.01 | 192 ± 12 | 1.72 | 2.04 | | | | +2.03 | 83 ± 15 | 1.22 | 1.58 | | | | +2.06 | 414 ± 44 | 2.34 | 3.26 | | | | +2.07 | 206 ± 36 | 1.72 | 2.04 | | | | +2.08 | 423 ± 50 | 2.28 | 3.05 | | | | +2.1 | 153 ± 24 | 1.29 | 1.57 | | | | +2.125 | 457 ± 44 | 2.14 | 3.52 | | | | +2.14 | 92 ± 18 | 0.79 | 1.07 | | | | +2.16 | 642 ± 24 | 2.16 | 4.05 | | | | +2.185 | 921 ± 23 | 1.61 | 2.80 | | | | +2.24 | 306 ± 21 | 1.34 | 1.64 | | | | +2.28 | 650 ± 63 | 2.22 | 4.67 | | | | +2.3 | 187 ± 9 | 1.86 | 2.40 | | | | +2.36 | 109 ± 22 | 1.34 | 2.26 | | | | +2.38 | 184 ± 7 | 0.67 | 3.68 | | | | +2.39 | 191 ± 8 | 1.17 | 2.36 | | | | +2.55 | 250 ± 12 | 1.58 | 2.40 | | | | +2.615 | 218 ± 20 | 2.62 | 3.46 | | | | +2.7 | 228 ± 23 | 2.80 | 4.17 | | | | +2.84 | 22 ± 4 | 0.82 | 1.16 | | | | +3.39 | 79 ± 8 | 2.82 | 4.17 | | | | +4.49 | 41 ± 6 | 2.57 | 3.98 | | | ples M16 through 29 (=upper part of Unit II, starting with a small erosive channel with spherules)—have a cleaner and better-sorted aspect, with a sparry calcitic cement. Mediumgrained calcareous sandstones with medium-grained terrigenous grains alternate with foraminiferal grainstones. The foraminifers have an infilling of greenish clay. The third group—samples M30 through 42 (Unit III)—shows a crude grading from laminated and cross-bedded silty and very fine sandstones to silt-stones. The topmost samples contain burrows. ## La Lajilla, Mexico At La Lajilla (Alvarez et al., 1992b) the K/T sandstone complex crops out at both sides of the overflow channel of the Lajilla reservoir dam. The upper Mendez shales are rich in Upper Maastrichtian foraminifers (Fig. 14A). The well-developed planktic fauna and high planktic/benthic foraminifer ratio suggest deposition at upper bathyal (±500 m) water depth. Bedding is not visible in the top 0.5 m of the Mendez Formation, possibly as a consequence of soft sediment deformation, similar to that in the Mimbral outcrop. The Lajilla K/T sandstone complex can also be subdivided into three units (Fig. 15). Unit I fills shallow (<50 cm) scours in the top Mendez. Unit I sands with K/T spherules are locally "injected" into the top Mendez beds. Unit I