TABLE 2. GRAIN-SIZE TRENDS IN THIN SECTIONS FROM UNIT II
OF THE MIMBRAL K/T SANDSTONE COMPLEX

	Genera Muddy Matrix				al Sparry Calcite Cement		Limeclasts			Terrig. Detritus		
Samples	Crs sand/fine gravel	Crs-med sand	Med-fine sand	Fine sand	Terr. sand	Foram grainst.	Crs	Med	Med-fine	No 1st grains	Med	Med-fine v fine
M29 M28 M27 M26 M25 M24 M23 M22 M21 M20 M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M11 M10 M11 M10 M11 M11 M11 M11 M11 M11	x				x x x	x x x x x	x	x x x x x	x x x x		X X X X X X X X X X X X X X X X X X X	
	x	x x	X X X X X X	X X X			X X	X X X X	X X X X	x	x	x x x x x x x x x x

m.mk. 16, supplemented at m.mk. 48 for the part of Unit II missing there. The most common composition is a foraminiferal grainstone with abundant lime-clasts and with minor amounts of terrigenous grains, alternating with layers rich in terrigenous detritus. A basic twofold subdivision could be made of Unit II sandstone (Table 3). The basal part has essentially a "dirty muddy matrix" (Fig. 12A); the upper part is a clean, bettersorted sandstone with a sparry calcite matrix (Fig. 12B). Petrographically, three different groups of sediment can be distinguished. The first group—the lower part of Unit II (M2 through 15)—has a "dirty" aspect due to smeared, lime-mud matrix. The sand is a polymict mixture of medium-fine to fine-grained terrigenous sand, with foraminifers. Lime-mud grains occur, roughly fining up from coarse grained at the bottom to medium and fine grained at the top. The second group—Sam-

TABLE 3. Ir, Fe, AND Cs ABUNDANCES IN THE MIMBRAL SECTION

Position (m)	Ir (ppt)	Fe (%)	Cst (ppm)		
-0.14	13 ± 4	2.90	3.55		
+0.13	18 ± 5	4.96	0.30		
+0.15	4 ± 9	12.95	0.73		
+0.78	16 ± 4	1.09	0.98		
+1.48	7 ± 4	1.41	0.36		
+1.83	$8 \pm 9/7$	1.19	0.54		
+1.98	25 ± 32/20	1.01	1.06		
+2.01	192 ± 12	1.72	2.04		
+2.03	83 ± 15	1.22	1.58		
+2.06	414 ± 44	2.34	3.26		
+2.07	206 ± 36	1.72	2.04		
+2.08	423 ± 50	2.28	3.05		
+2.1	153 ± 24	1.29	1.57		
+2.125	457 ± 44	2.14	3.52		
+2.14	92 ± 18	0.79	1.07		
+2.16	642 ± 24	2.16	4.05		
+2.185	921 ± 23	1.61	2.80		
+2.24	306 ± 21	1.34	1.64		
+2.28	650 ± 63	2.22	4.67		
+2.3	187 ± 9	1.86	2.40		
+2.36	109 ± 22	1.34	2.26		
+2.38	184 ± 7	0.67	3.68		
+2.39	191 ± 8	1.17	2.36		
+2.55	250 ± 12	1.58	2.40		
+2.615	218 ± 20	2.62	3.46		
+2.7	228 ± 23	2.80	4.17		
+2.84	22 ± 4	0.82	1.16		
+3.39	79 ± 8	2.82	4.17		
+4.49	41 ± 6	2.57	3.98		

ples M16 through 29 (=upper part of Unit II, starting with a small erosive channel with spherules)—have a cleaner and better-sorted aspect, with a sparry calcitic cement. Mediumgrained calcareous sandstones with medium-grained terrigenous grains alternate with foraminiferal grainstones. The foraminifers have an infilling of greenish clay. The third group—samples M30 through 42 (Unit III)—shows a crude grading from laminated and cross-bedded silty and very fine sandstones to silt-stones. The topmost samples contain burrows.

La Lajilla, Mexico

At La Lajilla (Alvarez et al., 1992b) the K/T sandstone complex crops out at both sides of the overflow channel of the Lajilla reservoir dam. The upper Mendez shales are rich in Upper Maastrichtian foraminifers (Fig. 14A). The well-developed planktic fauna and high planktic/benthic foraminifer ratio suggest deposition at upper bathyal (±500 m) water depth. Bedding is not visible in the top 0.5 m of the Mendez Formation, possibly as a consequence of soft sediment deformation, similar to that in the Mimbral outcrop. The Lajilla K/T sandstone complex can also be subdivided into three units (Fig. 15). Unit I fills shallow (<50 cm) scours in the top Mendez. Unit I sands with K/T spherules are locally "injected" into the top Mendez beds. Unit I